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Abstract. In the non-penurbative regime, matrix models display a large-N phase transition. 
For finite but large N, the transition is anticipated by strong oscillations in some coefficients 
in the recurrence relations for the orthogonal polynomials that allow the calculation of 
the partition function. This paper shows how to perform the limit, requiring the definition 
of different interpolating functions according to the parity of polynomials, in the cases of 
a single or two interacting matrices. 

1. Introduction 

In recent times there has been a rising interest in the study of the large-N, or planar, 
limit of matrix models. The simplest case of a Gaussian partition function was 
considered by Wigner; the statistical properties of the eigenvalues of such matrices 
closely match those of highly energetic sets of nuclear levels. The next step, the 
introduction of a cubic or  quartic interaction, was then performed by Brizin et a1 in 
a remarkable paper [l]. These interacting models, besides their importance in the 
investigation of the effectiveness of the planar limit as a tool for performing non- 
perturbative approximations in field theories, may describe the statistics of random 
bidimensional surfaces [2]. The more difficult case of two or more interacting matrices 
was solved by Mehta [3] and  was subsequently shown to be equivalent to an  Ising 
model on planar graphs [4]. 

Models with unitary matrices are extensively studied since they follow from the 
factorisation of Yang-Mills theories in two-dimensional lattices, as a consequence of 
gauge invariance. There are various methods for performing the large-N limit of the 
single matrix models, all sharing a SU( N )  x SU( N )  invariant action: saddle-point 
equations, collective fields, orthogonal polynomials and perhaps others. The 
orthogonal polynomial method seems to be the most effective, since it allows the 
systematic calculation of the various orders in the 1/N expansion and  extends also 
to the case with two matrices. 

The large-N limit of matrix models shows the interesting feature of one or  more 
phase transitions, as explained by Shimamune [5], Cicuta et a1 [6,7]1 and Gross and 
Witten [8]. 

The aim of this paper is to generalise the results of Bessis [9] and Mehta [3] on 
orthogonal polynomials, by showing how the phase transition develops in their scheme, 

t Cicuta et al were unaware of the existence of [ 5 ]  when submitting [ 6 ]  for publication. 
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once the range of the parameters is extended beyond the transition critical borders. 
The main difference that arises when considering the enlarged region of parameters 
is the appearance of a strong oscillatory character of certain coefficients, depending 
on their parity. This compels one to perform the large-N limit with a number of 
interpolating functions which is doubled with respect to the previously known cases. 
The new solutions are quite different and no longer describe the perturbative regime; 
they may be of interest in the study of the related statistical models. 

2. The single matrix model 

Starting from the partition function for a N x N Hermitian matrix field 

with A ( A l , .  . . , A h . )  = n,,,(A, -A,) ,  Bessis [9]  has shown an interesting method for 
deriving the 1/ N expansion. A detailed technical review of the method is given in [lo]. 

The A function is a Vandermonde determinant, therefore its value is not changed 
if each column of the matrix AI, = A { - '  is replaced by a linear combination of the 
others. He exploited this fact by introducing a class of orthogonal polynomials P k ( A )  
such that 

+E 

dA P , ( A ) P , ( A )  exp [ ( y  - - A 2 + g _ A 4 ) ]  N = h,S, I, 
with Po(A)  = 1, P l ( h )  = A  and P k ( - A )  = ( - l l k P k ( A )  due to the parity of the potential. 
These polynomials satisfy the recursion relation 

Pkti ( A  ) = A P k  ( A  - RkPk-1 ( A  ). (2.3) 

For the coefficients Rk one derives the equations 

With this trick, the integrations may be performed, since the different eigenvalues 
become decoupled, and one obtains: 

(2.6) 

where 6, = ho(lm2/ ,  g = 0 )  and so on. 
The case m2 > 0 has been solved by Bessis [ 9 ]  in the planar limit ( N  + 00) and also 

the two subsequent orders have been calculated. In  the large-N limit, by setting 
R (  k /  N) = ( 1 /  N) R I ,  k /  N = x E [0,1] for 0 s  k s, N, one gets from (2.4) the equation 

x = R ( x ) [ m 2 +  12gR(x)]  R ( 0 )  = 0. (2.7) 
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The vacuum energy 

R ( x )  
N - x  N \-r N R ( x )  

(2) - lo’ ( 1 - x)  log - d x  E = - l i m  i l o g Z , = - l i m  -log 
1 

reproduces the well known result obtained by Brezin et a1 [l]. 
The case m2<0 leads to quite different solutions. One may easily compute the 

first few coefficients Rk and find out that, in the limit N + CO, they behave as different 
powers of N according to k being even or  odd. This implies two different boundary 
conditions on the solution of the continuum version of the recursion relation. 

More precisely, one finds by direct computation that 

/m21 2 k + l  4g 

4g 
R Z k + ,  = N- [ 1 -N (2) +. . .]. 

The correct procedure is to define two different limiting functions 

(2.9) 

(2.10) 

with r and p satisfying the coupled equations that follow from (2.4) with k even and  
k odd, ( t  = (4g/m4)x): 

(2.11) 

A first solution is r ( t )  = p ( t )  = d ( - m 2 / l m 2 1 + m )  which is that previously found 
by Bessis [ 9 ]  and solves (2.7). The second 
is given by the pair 

r ( t )  =i(-m2/Im21 -G) 
p (  t )  = i( -m2/ l  m2/ + vFZ)  

and more interesting solution of the system 

(2.12) 

which is admissible only for m2g-”2 < -4 and displays the correct behaviour at t = 0. 
The critical value coincides with the one previously found by Shimamune [SI and 
Cicuta et a2 [ 6 ]  and leads to a new phase for the planar d4 model in zero dimensions. 

3. The two-matrices planar model 

The much more difficult case with two interacting Hermitian matrices was then con- 
sidered by Itzykson and Zuber [ l l ]  and the final solution was elegantly found by 
Mehta [3]. By relating the problem of calculating the partition function 

d A  d B  e x p [ - m 2 T r ( A 2 + B 2 ) - ( g / N )  Tr (A4+E4)+2cTr (AB)]  (3.1) 
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to a Cauchy problem for the heat equation, Mehta simplified the previous integral into 

hi 

dAl d p ,  A ( A i , .  . . ,  A h i ) A ( ~ i , .  . P N )  

(3.3) 

thus overcoming the impossibility of a simultaneous diagonalisation of the two matrix 
variables. 

This result, though simple-looking, is far from being trivial; the A functions appear 
with exponent one and the limit c + 0 requires great care, though giving immediate 
factorisation in (3.1). 

Without loss of generality, c is taken non-negative. 
The next step is to define a set of polynomials P k ( A )  = A k  +O(Ak-')  with definite 

parity, and satisfying the orthogonality property 

[ 1 d A  [ d p P , ( A ) P , ( p )  e ~ p [ - m ~ ( A ~ + p ~ ) - ( ( g / N ) ( A ~ + ~ ~ ) + 2 c A ~ ] = h , S , ~ .  
+IC 

- X" 
(3.4) 

These polynomials may be chosen according to the recurrence relation 

P k + i ( A  ) = A P k  ( A  - R k P k - l  ( A  ) - S k P k - , ( A  (3.5) 

with coefficients given by 

l ; [ m 2 + ( 2 g / N ) ( R , - l + R , + R , + l ) 1  = cR, 

cf; = - f ~ + ~ , ~ ~ 2 + ~ ~ ~ / ~ ~ ~ ~ l - l + ~ , + ~ , + l ~ l + ~ ~ g / N ~ ~ S , + S , + l + S , + , ~  (3.6) 

s, = (2g/Nc)ff;-,J;-2 

having set h , /h , - ,  =A.  

A ( A l , .  . . , A N ) ,  one easily finds 
By replacing A V  = A:-' with A, = P , - l ( A p ) ,  sharing the same determinant 

& - I  

Z N = N ! C N h t  n f F - k ,  
k = l  

(3.7) 

When m Z < c ,  the potential @ ( A ,  p ) =  m2(Az+pz)+(g /N) (A4+p4) -2cAp 
develops a minimum different from the origin. In this case, the computation by 
saddle-point methods of the first few coefficients fk  shows a dual behaviour: for k 
even, fk is of order one, while for k odd, the coefficient is of order N. One therefore 
defines two different functions F ( x )  and @ ( x ) ,  taking the values respectively ( l / N ) f 2  = 
0 and ( l / N ) f l  = ( c  - m2)/2g at z = 0. For mz > c, the two functions should coincide 
and take the value zero at x = 0. Analogously, one defines two functions p ( x )  and 
r ( x )  associated with coefficientsR,,,, and Rzi .  
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Elimination of Si ,  and some algebra, give in the large-N limit the following 
equations: 

m2( c + 2g@) 
r = F  

c2-2cg(F+@)-  12g2F@ 

m 2 (  c + 2gF) 
p = @  

c2-2cg(F+@)-12g2F@ 

together with 

( F  - @)(c’ -4g2F@){[c2 - 2cg(F+ 0) - 12g2F@]’ - c2m4} = 0 

). (3.9) 
12g2 c 2 ( F + c P ) + 8 g c F @ + 4 g 2 F @ ( F + @ )  ( [ c2 - 2cg( F + @) - 12g2F@.I2 

c ( ~ + @ ) + x - - ~ @ ( ~ - @ ) = c m ~  
C 

Therefore, the following three cases are possible: 
F = @  (3.10a) 

F@ = c2/4g2 (3.10b) 

[ c2 -2gc( F + @ )  - 1 2 g 2 ~ @ ] *  - c2m4 = 0. ( 3 . 1 0 ~ )  

The first case (3.10a) gives Mehta’s solution, the function F ( x )  satisfying a fifth- 

c2F(x)[ l  - m 4 / ( c - 6 g F ) 2 ] - 1 2 g 2 F ( x ) 3 =  -fcx. (3.11) 

order algebraic equation: 

In the limit c + 0 one obtains 
112 2 F ( x ) = - [ ( l + 3 x )  m4c -11  

r(x)  = 5 [ ( 1 + 9 x) -”* - 11 

72g2x 

1% 

(3.12) 

which reproduce the single matrix results, once the factor f is taken into account in 
the mass term. 

In the second case (3.10b), the condition that F ( x )  and  @(x)  should be real for 
any x in [0, 11 is satisfied only in the limit c + 0, and gives 

F ( x )  = ( ~ / 8 g ~ x ) [ ( m ~ - 4 g x ) ” ~ + l m ~ 1 ] ~  

@(x) = ( ~ / 8 g ~ x ) [ ( m ~ - 4 g x ) ” ’ - ~ m ~ ~ ] ~ .  
(3.13) 

In the computation of the vacuum energy, the vanishing quantity c cancels with the 
normalisation constant. One finds the condition m2 c - 2 4 ,  which corresponds to the 
critical point found in the single matrix case. 

The third case ( 3 . 1 0 ~ )  is more interesting. The equations for the computation of 
F ( x )  and @(x)  are: 

[ c 2  - 2gc( F + @) - 12g2F@]’ = m4c2 

-X + 8gF@ + ( 16g2/c)F@( F +  @) = 0. 
(3.14) 

The system has in particular the following solutions: 

F(x)@(x)  = (c/24g2){(2c - m’) - [(2c - m2)2-6xg]”2} 

F ( x ) + @ ( x )  = ( 1/4g){-m2+[(2c - m 2 ) 2  - 6 ~ g ] ” ~ } .  
(3.15) 

At x = 0, one correctly has F ( 0 )  = 0 and @ ( O )  = ( c  - m2)/2g. 
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The condition for reality of F ( x )  and @(x)  for all X E  [0, 11, that is ( F + @ ) 2 -  
4F@ > 0, gives the boundary separating the two phases, cases ( 3 . 1 0 ~ )  and (3.10c), in 
the plane of the dimensionless parameters cg-’’I > 0 and -cc < m 2 g - ’ ” <  +CO. 
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